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ABSTRACT 
Future service-oriented computing systems will include 
technology to discover and compose component services, and to 
detect and adapt to failures. Already industry has developed some 
competing service discovery architectures and protocols to 
provide such capabilities. In this paper, we compare performance 
of three such architectures (static two- and three-party and 
adaptive two-/three-party) when subjected to node failures. We 
use simulation to instantiate each architecture with behaviors 
adapted from known service discovery protocols. We quantify the 
functional effectiveness achieved for each instantiation under an 
increasing rate of failures. We then decompose non-functional 
periods into failure-detection latency and failure-recovery latency. 
Our results suggest an adaptive architecture yields robustness 
superior to a static three-party architecture and equivalent to, or 
slightly better than, a static two-party architecture. While our 
results find that an adaptive architecture entails higher overhead, 
we argue that it should prove possible to achieve efficiency 
similar to a static three-party architecture. 

Categories and Subject Descriptors 
D.2.11 [Software Architectures]: Dynamism and Performance 

General Terms 
Performance, Design, Reliability, Experimentation 
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1. INTRODUCTION 
 

Future service-oriented computing systems will require 
technology to discover and compose component services, and to 
detect and adapt to failures. Already industry has developed 

several competing service discovery architectures and protocols 
[e.g., 1-7] that include mechanisms service-oriented systems can 
use to detect failures, and then to recover by finding and 
composing remote components. In past work, we characterized 
the robustness of selected service discovery architectures [8-12], 
and devised and evaluated some adaptive algorithms to improve 
performance [13-17]. In one previous paper [12], we investigated 
the effectiveness and efficiency of selected discovery systems in 
assisting service-oriented applications to detect failures in remote 
services and to locate replacements. In that work, we modeled 
selected discovery strategies and failure-recovery techniques in 
combination with two major architectures that underlie present-
day service discovery systems: two-party, where clients and 
services rendezvous directly, and three-party, where clients and 
services rendezvous through a directory. For the two-party 
architecture, we modeled behaviors adapted from Universal Plug-
and-Play  (UPnP) [1]; for the three-party architecture, we 
modeled behaviors from Jini™ Networking Technology (Jini) [2]. 
While we found the two-party architecture more effective and 
efficient (than the three-party architecture) in detecting and 
recovering from node failures, we also noted that the three-party 
architecture provides better support for large-scale, service-
oriented systems, such as grid computing systems [18]. Based on 
these previous findings, we suspect that some form of adaptive 
architecture might yield the scalability of the three-party 
architecture (when directories are available) and the reliability of 
the two-party architecture (when directories are unavailable). 

In this study, we expand our investigation of service discovery 
systems to include an adaptive (two-/three-party) architecture, 
which operates as a three-party architecture under normal 
conditions but which adapts to a two-party architecture when 
directories are lost to failure. For the adaptive architecture, we 
model behaviors from the Service Location Protocol (SLP) [3]. 
Since discovery systems provide middleware to support service-
oriented applications, we layer a model of the same application on 
top of all three architectures (and their underlying behaviors). The 
application consists of a client that seeks to discover, compose, 
and use a set of remote services.  We restrict client behavior in a 
form that allows us to specifically focus on fundamental 
properties of the underlying service discovery systems. For 
example, we ensure activation of failure-detection and recovery 
processes by prohibiting clients from caching references to 
discovered services. As much as possible, we also select client 
behaviors that expose performance effects arising from 
architectural differences, while limiting performance effects 
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arising from differences in underlying behaviors. To quantify 
performance differences, we measure the functional effectiveness 
of the simulated application, that is, the proportion of time that the 
client can access an operational subset of remote services required 
to perform the intended use case. To provide a clearer picture of 
failure response, we decompose functional effectiveness to 
measure failure-detection latency (i.e., the time required for a 
client to recognize a remote service has failed) and failure-
recovery latency (i.e., the time required for the client to replace a 
failed service). We also measure overhead as the number of 
messages generated by the underlying protocol. 

The remainder of the paper is organized as four sections. Section 
2 introduces the essential concepts underlying service discovery 
architectures and protocols, including behaviors and parameters 
(as implemented in our models) associated with discovery, failure 
detection, and recovery. Section 3 describes the design and 
parameters used in our simulation experiments. Section 4 presents 
our simulation results and discusses our fundamental findings and 
associated causes. We conclude in Section 5. 

2. DISCOVERY AND RECOVERY 
Service discovery systems enable clients to discover and use 
remote services over a network. Such systems also include 
protocols and mechanisms that enable service-oriented 
components to detect failures, and to respond by restoring 
connections to remote components or by locating alternate 
components. 

2.1 Service Discovery 
A number of different designs have been proposed for service 
discovery systems. For example, Intel and Microsoft developed 
UPnPTM to enable plug-and-play by service-oriented components, 
while Sun Microsystems developed Jini as a general service 
discovery system to operate atop JavaTM. In addition, Sun and 
other companies also created the Service Location Protocol 
(SLP), which has now been standardized by the Internet 
Engineering Task Force (IETF). Our analysis of these and other 
discovery systems revealed that most designs use one of two 
underlying architectures: two-party or three-party. A two-party 
architecture consists of two component types: a service manager 
(SM) that provides information on behalf of managed services 
(which we call service providers, or SPs) and a service user (SU) 
that discovers these services on behalf of a client.  A SM 
maintains a set of service descriptions (SDs) that associate 
specific service attributes with a particular SP. The three-party 
architecture adds a third component type, a service cache 
manager (SCM), which provides an independent directory to hold 
a set of SDs provided by SMs. The SCM (directory) operates as 
an intermediary, matching SDs acquired from SMs to queries 
received from SUs. 

The goal of service discovery is to allow a SU (supporting a 
client) to discover SDs to satisfy specific requirements. In a two-
party architecture, service discovery by a SU may take place 
either passively (i.e., the SU listens for multicast advertisements 
of SDs by SMs) or actively (i.e., the SU seeks SDs through 
multicast queries to SMs). In a three-party architecture, both SMs 
and SUs first seek SCMs either passively (by listening for 
multicast SCM announcements) or actively (by issuing multicast 
queries for SCMs). SMs (on behalf of SPs) then register SDs with 

all discovered SCMs and periodically renew those registrations, 
while SUs query SCMs for SDs of interest. In this way, SMs and 
SUs “rendezvous” through SCMs. A three-party architecture can 
be instantiated with multiple SCMs (i.e., directory replicas) to 
mitigate the effect of SCM failure and to improve scalability. 

We model service discovery architectures as topologies of various 
components, where each SM manages (i.e., is paired with) one SP 
that implements a specific type of service, either a fast sensor, a 
slow sensor, or an actuator. Our experiment topologies include 
four SPs of each service type, whose roles are explained below in 
Section 3. Figure 1 depicts a two-party architecture deployed in a 
topology of 13 nodes: 12 SM-SP pairs and one SU. In our 
topologies, each SU, SM-SP pair, and SCM resides on a distinct 
node. We model the two-party architecture using UPnP behaviors, 
as described elsewhere [1, 9, 10]. Figure 2 shows the three-party 
architecture deployed in a topology of 13 to 16 nodes: 12 SM-SP 
pairs, one SU, and up to three SCMs. We model the three-party 
architecture using behaviors from the Jini specification, as 
described elsewhere [2, 9, 10]. Our model of the adaptive (two-
/three-party) architecture maintains (when possible) the three-
party topology shown in Figure 2, but switches to the two-party 
topology of Figure 1 when SCMs become unavailable. The 
adaptive architecture is modeled using behavior from SLP, as 
described in the relevant specification [3]. 

2.2 Failure-detection Techniques 
To detect failure, components supported by discovery protocols 
rely on a combination of two techniques: (1) monitoring periodic 
transmissions from remote components and (2) responding to 
exceptions signaled (when a message could not be sent 
successfully) by an underlying (reliable) transport service. 
Periodic message transmission and monitoring is a key failure-
detection strategy used in discovery systems. Components can 
listen for such recurring messages, much as a heartbeat can be 
monitored to assess patient health. For example, UPnP requires 
SMs to periodically announce SD availability, and Jini and SLP 
require SCMs to periodically announce themselves. Missing an 
anticipated announcement might indicate failure of a SM or SCM. 
Similarly, Jini and SLP require SMs to periodically renew service 
registrations on each SCM. Missing a scheduled renewal indicates 
to the SCM that the associated SM or SP has failed. At the 
application level, clients may also maintain regular contact with 
remote services. For example, a client may receive periodic, 

Figure 1. Two-party service discovery architecture 
with one service user and 12 service manager-

service provider pairs 
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scheduled readings from a remote-sensor service. Missing a 
scheduled interaction with a remote service might indicate a 
component failure or a communications blockage. 

For non-periodic transmissions, components typically use a 
reliable transport service, which persistently resends 
unacknowledged messages up to some bound, issuing a remote 
exception (REX) if that bound is exceeded. For example, if a 
client attempts to invoke a method offered by a remote service 
that has failed, then the underlying transport service will 
eventually return a REX to the client. This outcome occurs in a 
three-party architecture when a SU attempts to query for a SD 
from a failed SCM, or when a SM attempts to register a SD with a 
failed SCM.  

2.3 Failure-recovery Techniques 
Once a failure is detected, various techniques can be used to 
recover. Discovery systems generally support two recovery 
techniques: soft-state and application-level persistence. The soft-
state technique relies on receiving and maintaining transient, or 
soft, information about remote components. Here, remote 
components issue periodic announcements that convey soft 
information about the component state, which a receiver can 
cache for a period of time, consistent with the expected 
announcement rate. Each announcement may convey updated 
state information that a receiver can use to overwrite previously 
cached state information with information from newly arriving 
announcements. If an announcement fails to arrive, a receiver 
may discard the previously cached state, effectively eliminating 
knowledge about the announcing component. If announcements 
resume, a receiver may rediscover the remote component and 
recover the latest component state. In our model, the client (and 
supporting SU) uses a modified form of soft-state recovery, which 
allows discarded components to be either rediscovered or 
replaced. For example, in our (static) two-party model, SMs send 
heartbeat messages to refresh SDs cached by a SU. If the SU fails 
to receive these heartbeat messages, it will discard the SD as well 
as knowledge about the related SM. 

To effect recovery, SUs in our two-party model commence 
periodic multicast queries to search for a new instance of a 
required service. After reacquiring a matching SD, the SU ceases 

sending queries until the need for a new SD arises again. In our 
three-party model, loss of contact with a service may cause the 
SU to query a SCM for a replacement. In addition, a SCM will 
discard a SD after failing to receive heartbeat messages from SMs 
to renew the cached SD. In our experiments, SUs (in a three-party 
topology) poll SCMs at 180-s intervals to check the status of 
previously discovered SMs. If the SCM response indicates that 
the previously cached SD has been purged, then the SU assumes 
the related service has failed. When services (i.e., SM-SP pairs) 
recover from a failure, discovery procedures (in our models of 
Jini and SLP behaviors) ensure that the SM rediscovers the SCM 
within 120 s. SUs can then acquire the corresponding SD by 
querying the SCM.  Of course, SCMs can also fail.  

In our model of a static three-party architecture, SCM startup 
announcements ensure rediscovery of a restarted SCM by SMs 
and SUs within 30 s after the SCM restarts. If all SCMs have 
failed, a SU cannot recover a needed SD until at least one SCM 
recovers. In our model of an adaptive architecture, losing contact 
with all SCMs causes a SU or SM to issue periodic multicast 
queries (at 120 s intervals) to search for a SCM. If no SCMs can 
be found following the first attempt, then the SU changes its 
strategy and also issues multicast queries for SMs until a needed 
service is found. The SU continues to interact directly with any 
discovered SMs while concurrently continuing to search for a 
SCM. When a SCM is found, direct communication between the 
SU and SMs ceases and the SU reverts to obtaining services 
through the newly discovered SCM. In this way, an adaptive 
architecture may operate with either two or three parties, 
contingent upon SCM availability. 

When failure of a remote component leads to a REX, discovery 
systems generally expect application-level software to initiate 
recovery, guided by an application-level persistence policy. This 
policy may require that a component ignore the REX, retry the 
operation for some period, or discard knowledge of the (failed) 
remote component. Since our experiment simulates a real-time 
control application, our client (and supporting SU) does not 
persist after a REX, but instead discards knowledge of the failed 
component; thus, relying on periodic announcements and soft-
state techniques to recover from the failure. Once discarded, no 
interactions occur with a remote component until it is 
rediscovered. We also employ this policy when SCM failure leads 
to a REX in response to a SU query or SM registration (or 
renewal) attempt.  

3. EXPERIMENT DESCRIPTION 
Previously [12], we conducted a simulation experiment to 
compare the performance of static two- and three-party 
architectures, and associated failure-detection and recovery 
mechanisms. Here, we use the same experiment design, but 
include a comparison of the static architectures against an 
adaptive architecture (as described above in Section 2). We 
simulated the architectures in various topologies, yielding the 
eight configurations shown in Table 1. Each configuration 
includes a single client (and supporting SU) and twelve SM-SP 
pairs (four of each type: slow sensor, fast sensor, and actuator). 
The configurations differ in terms of the number of SCMs 
supported.   

Each experiment repetition of a particular configuration proceeds 
along similar lines. The client discovers and activates a set (one 

Figure 2. Three-party service discovery architecture 
with one service user, 12 service manager-service 

provider pairs, and up to 3 service cache managers 
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fast sensor, one slow sensor, and one actuator) of remote services 
needed to carryout the intended use case. After activation by the 
client, the fast sensor transmits a reading every 2 s and the slow 
sensor transmits a reading every 30 s. The client invokes the 
actuator upon receiving an appropriate combination of readings. 
We simulate actuation attempts using a uniform distribution with 
a mean of 60 s.  When the client holds one SD for a SP of each 
type (fast sensor, slow sensor, and actuator) and each of the 
related SPs is operational, then the application is considered 
functional.  If the client lacks SDs for one or more SP type, or if 
one or more of the SDs held by the client describes a SP that is 
(unbeknownst to the client) not operational, then the application is 
considered non-functional. We measure accumulated functional 
time over the experiment duration, D, during which SM-SP pairs 
and SCMs (if any) periodically fail and recover. Prior to 
beginning interval D, we run the configuration until discovery 
completes and the client first becomes functional. To focus 
exclusively on failure-detection and recovery behavior, we do not 
permit clients to cache backup services; thus, the client holds at 
most one SD for each SP type at any time. In the static three-party 
and adaptive architectures, some additional decisions are 
necessary. Each SM registers its SD with each discovered SCM, 
and then renews that registration every 60 s (for slow sensors and 
actuators) or 300 s (for fast sensors). When a renewal is missed, 
the SCM purges the associated SD. For each SD discovered 
through a SCM, the client polls the SCM every 180 s to learn if 
the SD has been purged. If the SD has been purged, the client 
assumes that the related SM-SP pair has failed.  

3.1 Failure Model 
During interval D, each node containing a SM-SP pair (or SCM, 
where applicable) fails randomly and independently, although at 
least one SM-SP pair of each type always remains active in order 
to provide the client an opportunity to regain a functional state. 
Given a failure rate R  (with R  increasing from 0.1 to 0.9 in 0.1 
increments) we can calculate a derived mean time-to-failure 

( ) DR ⋅−= 1µ . We randomly select node-failure times from a 
“stepped” normal distribution with three steps: a 0.15 probability 
that a failure occurs before time ( )µµ ⋅−= 2.0t , a 0.7 probability 
that a failure occurs in the range [ ]µµµµ ⋅+⋅−= 2.0,2.0t , and a 
0.15 probability that a failure occurs in a range [ ]µµµ ⋅⋅+= 2,2.0t . 
The time of failure is distributed uniformly within each step.  

When a node fails, the affected SM-SP or SCM becomes 
unavailable for a time, chosen from one of three failure classes, 

each having a different probability P of occurrence and an 
associated duration. Short failures occur with 1.0=P  for a fixed 
period of 135 s; intermediate failures occur with 7.0=P  for 
duration selected uniformly on the interval [180 s, 300 s]; long 
failures occur with 2.0=P  for duration selected uniformly on the 
interval [480 s, 600 s]. 

3.2 Metrics 
We refer to the time during which a client is in a functional state 
(i.e., has access to the necessary minimum set of operational SM-
SP pairs) as functional time. We define non-functional time, F , 
as the accumulated time over D during which a client is in a non-
functional state. We let ( ) DFDF /−= denote a client’s 
functional effectiveness. 

A client may incur a delay before detecting entry to a non-
functional state. We refer to this delay as failure-detection 
latency. After detecting a non-functional state, the client may 
incur additional delay while restoring any lost SM-SP pairs. We 
refer to this delay as failure-recovery latency. Periods of failure-
detection latency and failure-recovery latency can overlap when a 
client loses more than one SM-SP pair. 

We properly account for such overlapping periods in F . We 
define two logical conditions, one of which can be used to 
measure failure-detection latency and one of which can be used to 
measure failure-recovery latency.  

 
1. Service discard condition:  This condition states that each 

SD held by a SU must match a SD managed by a SM. 
Violation of this condition occurs when the SM fails but the 
SU still holds a SD provided by the SM (i.e., the information 
about the service is inconsistent between the SU and the 
defunct SM). When a violation of this condition occurs (i.e., 
the SM fails), failure-detection latency is accumulated up to 
the time the SU detects that the SD has failed.  

 
2.  Service discovery condition: This condition states that a SD 

managed by a SM should be known to a SU if the SU and 
SM can communicate over the network, and the SD matches 
the requirements of the SU.  Violation of this condition 
occurs if the SU detects that the SM has failed (thus the SU 
knows that the information about the service is inconsistent).  
When a violation of this condition occurs (i.e., the SU 
detects the failed SM), failure-recovery latency is 
accumulated up to the time the SU acquires a new SD 
matching its needs. 

 

4. RESULTS AND DISCUSSION 
For each of the eight configurations in Table 1, we assigned D = 
1800 s and executed multiple (typically 60) independent 
experiment repetitions for each value of R. We conducted one set 
of experiments (see Sections 4.1 and 4.2) where at least one SM-
SP pair remains available for each service type (so the client 
always has the possibility to recover a set of necessary services). 
To confirm our findings under different assumptions, we then ran 
a second variant of the experiment (see Section 4.4) where all 
SM-SP pairs may fail (so there can be times when the client has 
no possibility to recover a set of necessary services). For each 
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repetition, we recorded functional effectiveness (and its 
components: failure-detection latency and failure-recovery 
latency) and the total number of messages exchanged. 
 

4.1 Functional Effectiveness 
Figure 3 shows the average functional effectiveness of the static 
two-party, static three-party, and adaptive architectures as R 
increases, but where one SM-SP pair for each service type is 
always available (implying that the system could be functional 
for all of D). In examining Figures 3a-3c, recall that failure 
detection occurs when the client misses an expected sensor 
reading or receives a REX in response to an attempted actuation. 
In the three-party architecture (whether static or adaptive), failure 
detection may also occur when, upon polling available SCMs, the 
client cannot find SDs matching the three SM-SP pairs currently 
in use. To become functional again, the client must invoke 
recovery mechanisms to regain or replace failed SM-SP pairs. In 
the static three-party architecture, at least one SCM must be 
operational for recovery to succeed. During periods when all 
SCMs fail, the client is unable to recover needed services, 
increasing non-functional time. In the adaptive architecture, the 
client may switch to a two-party operation, searching for SM-SP 
pairs directly. 
Overall, the adaptive and static two-party architectures exhibited 
high effectiveness, allowing the client to remain functional for as 
much as 80% of D even as the failure rate reaches 80% 
( 360=µ s). The mean effectiveness of the static two-party 
architecture across all failure rates was 0.901. The adaptive 
architecture showed comparable or better effectiveness regardless 
of the number of SCMs, achieving mean effectiveness of 0.909 
with no SCMs, 0.899 with one SCM, 0.906 with two SCMs, and 
0.913 with three SCMs. The static three-party architecture 
increased   in   effectiveness with the number of SCMs, reaching 
(Figure 3c) a rough parity (mean effectiveness of 0.907) with the 
other architectures as the number of SCMs reached three. Adding 
SCMs improved effectiveness by lowering the incidence of 
concurrent failure of all SCMs. 
The adaptive architecture required only one or two SCMs to 
obtain effectiveness comparable to the static three-party 
architecture with three SCMs. The adaptive architecture without 
SCMs proved slightly more effective than the static two-party 
architecture (mean effectiveness of 0.901). We attribute this 
small difference to the underlying UPnP behavior (static two-
party architecture), which requires successful exchange of more 
messages than the equivalent SLP behavior (adaptive 
architecture) to transfer a SD from a SM to the client (more 
details are provided elsewhere [3,9,10]). 
 

4.2 Efficiency 
In our simulations, message counts (Figure 4) revealed the static 
two-party architecture to be significantly more efficient than any 
configuration of the other architectures, because the two-party 
configuration does not multicast queries to discover SCMs. The 
adaptive architecture attempts to discover SCMs even when they 
do not exist; thus, more messages were generated. When 
attempting to discover SCMs, the SLP procedures (adaptive 
architecture) required more messages per discovery attempt than 

Figure 3. Functional effectiveness under increasing R where at 
least one SM-SP of each type is operational (60 reps/point) 
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the Jini procedures (three-party architecture); thus, for a given 
number of SCMs one might expect our model of the adaptive 
architecture to require more messages than our equivalent model 
of a three-party architecture. This held true for one- and two-SCM 
configurations; however, as the number of SCMs increased, Jini 
discovery procedures tended to generate more messages because 
(in Jini) SCMs attempt to discover each other, while in SLP 
SCMs do not. This leads us to believe that the adaptive and static 
three-party architectures would provide comparable efficiencies 
when deployed with the same number of SCMs, provided that 
both architectures adopt identical underlying behaviors for 
discovery, registration, SD renewal, and update propagation.  

Figure 4 also reveals that, for each configuration with SCMs, total 
message count decreases as failure rate increases (that is, those 
curves exhibit a negative slope). This occurs because, as SCMs 
fail more frequently, the number of SD renewal messages and 
SCM heartbeat messages decreases. Further, the rate of decline in 
message counts is inversely related to the number of SCMs 
employed, that is, the more SCMs in a configuration, the steeper 
the negative slope. Similarly, SM-SP pairs also fail more 
frequently, causing the number of queries for SCMs to decline. 

In contrast, the static two-party architecture exhibits an increase 
in the message count with an increasing failure rate. The increase 
in message count occurred because, as the failure rate increased, 
the client more frequently invoked recovery procedures after 
detecting failed SM-SP pairs. Compare this with the result 
obtained when the adaptive architecture is deployed without 
SCMs. In this latter case, message count decreased with 
increasing failure rate because SLP procedures still require SM-
SP pairs to query for SCMs. 

4.3 Underlying Causes 
To better understand differences in effectiveness among the 
alternate architectures, we decomposed (Figures 5a-5c) non-
functional time to show the estimated proportion attributable to 
failure-detection latency and to failure-recovery latency. Figure 
5a shows that detection latency is the dominant (~90%) 
component of non-functional time for the static two-party model. 

Analysis of execution traces showed most failures were detected 
through missed sensor readings (2 s for fast sensors and 30 s for 
slow sensors) or REXs received in response to failed actuation 
messages. Previously [12], we found we could reduce failure-
detection latency (and therefore non-functional time) associated 
with violation of the service discard condition by increasing the 
registration-renewal frequency for SMs (decreasing the interval 
between heartbeats). 

Figure 4. Average message counts under increasing R 
where at least one SM-SP of each type is operational (60 

reps/point) 
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Figure 5. Detection and recovery latencies of various 
architectures and topologies as a proportion of non-

functional time (60 reps/point) 
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(c) Adaptive three-party architecture with 3 
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For the static three-party architecture, our data showed that the 
incidence of concurrent failure of all SCMs increased steadily 
with increasing failure rate, leading to correspondingly longer 
periods of time during which the client is unable to find enough 
SM-SP pairs (and thus remained in violation of the service 
discovery condition). For the client to regain a functional state, 
some SCM must first recover, accept SD registrations from 
available SMs, and respond to queries for SDs from the client. 
Lacking an ability to directly discover SMs, the client in the static 
three-party architecture remains non-functional while awaiting 
recovery of at least one SCM. 

These effects are evident in Figure 5b, which shows the 
proportion of recovery latency increased for the static three-party 
architecture (with three SCMs) as the failure rate rose. This trend 
is more marked as the number of SCMs decreases (not shown).  

Finally, Figure 5c compares failure-detection latency to failure-
recovery latency for the adaptive architecture with three SCMs. 
Here, the allocation of delay approximates that for the static two-
party architecture (see Figure 5a).  After detecting a failure and 
finding no available SCMs, the adaptive architecture adopts two-
party discovery procedures, which reduced the proportion of time 
spent on failure-recovery latency; thus, failure-detection latency 
again became the greater part of non-functional time. 
 

4.4 Results for Experiment Variant 
To confirm our findings, we varied the experiment to permit all 
SM-SP pairs to fail, rather than to have at least one pair always 
available for each service type. Figure 6 shows these results for 
the same configurations as in Figure 3. Figures 6a-6c illustrate 
that functional effectiveness for all architectural variants 
decreased substantially above R = 60%, as the incidence of 
concurrent SM-SP failures increased, resulting in extended 
periods with no SM-SP pairs available for at least one of the 
service types needed by the client. The curves in Figure 6 show 
that overall functional effectiveness decreased (from Figure 3) for 
all configurations due to increased non-functional time arising 
from situations where all SM-SP pairs of a particular service type 
became temporarily unavailable. Nevertheless, the comparative 
ranking of the configurations remained consistent with the results 
shown in Figure 3. The adaptive architecture with no SCMs again 
outperformed the static two-party architecture, and the adaptive 
model also exhibited higher effectiveness than the static three-
party model (for the same number of SCMs). Further, the mean 
effectiveness across all failure rates of the adaptive model with 
one and two SCMs (0.809 and 0.811 respectively) exceeded the 
mean effectiveness of the static three-party model with three 
SCMs (0.787). We note that, in this variant of our experiment, the 
performance of the static three-party architecture is hindered both 
by situations where all SCMs are unavailable and where all SM-
SP pairs of specific service types are unavailable. 
 

5. CONCLUSIONS 
This study compared performance of adaptive and static service 
discovery architectures under conditions of increasing node 
failure. The study found that an adaptive architecture exhibits 
equivalent or better overall functional effectiveness when 
compared against either a static two-party or three-party 

(a) Static Two-Party, Adaptive Two/Three Party with Zero 
and One SCM, and Static Three-Party with one SCM. 

(b) Static Two-Party, Adaptive Two/Three Party with Zero 
and two SCMs, and Static Three-Party with two SCMs.  

Figure 6. Functional effectiveness under increasing R 
where all SM-SP pairs of each type are allowed to fail 

(60 reps/point) 

(c) Static Two-Party, Adaptive Two/Three Party with Zero 
and three SCMs, and Static Three-Party with three 
SCMs.  
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architecture (assuming an equivalent number of directory 
replicas). These results also suggest that adaptive architectures 
could achieve a level of efficiency comparable to an equivalent 
static architecture, when configured with the same topology and 
implementing the same behaviors for discovery, registration, and 
renewal. Further, the results found that functional effectiveness of 
an adaptive architecture configured with one or two directory 
replicas approaches or exceeds the effectiveness of a static three-
party architecture configured with three directory replicas. This 
means that, while the adaptive and static three-party architectures 
can both provide independent directories to support service 
discovery in large-scale systems, the adaptive architecture might 
yield equivalent or better effectiveness with fewer directory 
replicas. The adaptive architecture can thus potentially reduce the 
overhead associated with managing redundant directories. Future 
work is needed to investigate whether or not an adaptive 
architecture can successfully employ two-party procedures across 
a large-scale network. 
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